Головна - Шкірні захворювання
Знайти найбільше чи найменше значення. Вивчення графіка функції. Координати вершини параболи

Насправді часто доводиться використовувати похідну у тому, щоб обчислити найбільше і найменше значення функції. Ми виконуємо це дію тоді, коли з'ясовуємо, як мінімізувати витрати, збільшити прибуток, розрахувати оптимальне навантаження виробництва та інших., тобто у випадках, коли необхідно визначити оптимальне значення будь-якого параметра. Щоб вирішити такі завдання правильно, треба добре розуміти, що таке найбільше та найменше значення функції.

Зазвичай ми визначаємо ці значення у межах деякого інтервалу x , який може своєю чергою відповідати всієї області визначення функції чи його частини. Це може бути як відрізок [a; b ] , і відкритий інтервал (a ; b) , (a ; b ) , [ a ; b) , нескінченний інтервал (a ; b) , (a ; b ) , [ a ; b) або нескінченний проміжок - ∞ ; a , (- ∞ ; a ) , [ a ; + ∞) , (- ∞ ; + ∞) .

У цьому матеріалі ми розповімо, як обчислюється найбільше та найменше значення явно заданої функції з однією змінною y=f(x) y = f(x) .

Основні визначення

Почнемо, як завжди, із формулювання основних визначень.

Визначення 1

Найбільше значення функції y = f (x) на деякому проміжку x – це значення m a x y = f (x 0) x ∈ X , яке за будь-якого значення x x ∈ X , x ≠ x 0 робить справедливою нерівність f(x) ≤ f (x 0).

Визначення 2

Найменше значення функції y = f (x) на деякому проміжку x – це значення m i n x ∈ X y = f (x 0) , яке за будь-якого значення x ∈ X , x ≠ x 0 робить справедливою нерівність f(X f (x) ≥ f(x0) .

Ці визначення є досить очевидними. Ще простіше можна сказати так: найбільше значення функції – це найбільше значення на відомому інтервалі при абсцисі x 0 , а найменше – це найменше прийняте значення тому ж інтервалі при x 0 .

Визначення 3

Стаціонарними точками називаються такі значення аргументу функції, у яких її похідна звертається до 0 .

Навіщо нам потрібно знати, що таке стаціонарні точки? Для відповіді це питання треба згадати теорему Ферма. З неї випливає, що стаціонарна точка - це така точка, в якій знаходиться екстремум функції, що диференціюється (тобто її локальний мінімум або максимум). Отже, функція прийматиме найменше або найбільше значення на певному проміжку саме в одній зі стаціонарних точок.

Ще функція може набувати найбільше чи найменше значення у тих точках, у яких сама функція є певної, та її першої похідної немає.

Перше питання, яке виникає при вивченні цієї теми: чи у всіх випадках ми можемо визначити найбільше чи найменше значення функції на заданому відрізку? Ні, ми не можемо цього зробити тоді, коли межі заданого проміжку співпадатимуть з межами області визначення, або якщо ми маємо справу з нескінченним інтервалом. Буває і так, що функція в заданому відрізку або на нескінченності прийматиме нескінченно малі або нескінченно великі значення. У цих випадках визначити найбільше та/або найменше значення неможливо.

Зрозумілішими ці моменти стануть після зображення на графіках:

Перший малюнок показує нам функцію, яка набуває найбільшого та найменшого значення (m a x y і m i n y) у стаціонарних точках, розташованих на відрізку [ - 6 ; 6].

Докладно розберемо випадок, зазначений на другому графіку. Змінимо значення відрізка на [1; 6] і отримаємо, що найбільше значення функції досягатиметься в точці з абсцисою у правій межі інтервалу, а найменше – у стаціонарній точці.

На третьому малюнку абсциси точок являють собою граничні точки відрізка [-3; 2]. Вони відповідають найбільшому та найменшому значенню заданої функції.

Тепер подивимось на четвертий малюнок. У ньому функція приймає m a x y (найбільше значення) і m i n y (найменше значення) у стаціонарних точках на відкритому інтервалі (-6; 6).

Якщо ми візьмемо інтервал [1; 6) , можна сказати, що найменше значення функції у ньому буде досягнуто в стаціонарної точці. Найбільшого значення нам буде невідомо. Функція могла б прийняти найбільше значення при x , що дорівнює 6 якщо б x = 6 належала інтервалу. Саме цей випадок намальовано на графіку 5 .

На графіці 6 найменше значення дана функція набуває у правій межі інтервалу (- 3 ; 2 ), а про найбільше значення ми не можемо зробити певних висновків.

На малюнку 7 бачимо, що функція матиме m a x y в стаціонарній точці, що має абсцис, рівну 1 . Найменшого значення функція досягне межі інтервалу з правого боку. На мінус нескінченності значення функції асимптотично наближатимуться до y = 3 .

Якщо ми візьмемо інтервал x ∈ 2; + ∞ , то побачимо, що задана функція не прийматиме на ньому ні найменшого, ні найбільшого значення. Якщо x прагне 2 , то значення функції прагнутимуть мінус нескінченності, оскільки пряма x = 2 – це вертикальна асимптота. Якщо ж абсцис прагне до плюс нескінченності, то значення функції асимптотично наближатимуться до y = 3 . Саме це випадок зображено малюнку 8 .

У цьому пункті ми наведемо послідовність дій, яку потрібно виконати знаходження найбільшого чи найменшого значення функції на певному відрізку.

  1. Спочатку знайдемо область визначення функції. Перевіримо, чи входить до неї заданий за умови відрізок.
  2. Тепер обчислимо точки, що містяться в даному відрізку, в яких немає першої похідної. Найчастіше їх можна зустріти у функцій, аргумент яких записаний під знаком модуля, або у статечних функцій, показник яких є дробово раціональним числом.
  3. Далі з'ясуємо, які стаціонарні точки потраплять у заданий відрізок. Для цього треба обчислити похідну функції, потім прирівняти її до 0 і вирішити рівняння, що вийшло в результаті, після чого вибрати відповідне коріння. Якщо у нас не вийде жодної стаціонарної точки або вони не потраплятимуть у заданий відрізок, ми переходимо до наступного кроку.
  4. Визначимо, які значення прийматиме функція в заданих стаціонарних точках (якщо вони є), або в тих точках, в яких не існує першої похідної (якщо вони є), або обчислюємо значення для x = a і x = b.
  5. 5. У нас вийшов ряд значень функції, з яких тепер потрібно вибрати найбільше і найменше. Це й будуть найбільші та найменші значення функції, які нам потрібно знайти.

Подивимося, як правильно застосувати цей алгоритм під час вирішення завдань.

Приклад 1

Умова:задана функція y = x3+4x2. Визначте її найбільше та найменше значення на відрізках [1; 4] і [-4; -1].

Рішення:

Почнемо з знаходження області визначення цієї функції. І тут їй буде безліч всіх дійсних чисел, крім 0 . Іншими словами, D (y) : x ∈ (- ∞ ; 0) ∪ 0 ; + ∞. Обидва відрізки, задані в умові, будуть знаходитися всередині області визначення.

Тепер обчислюємо похідну функції згідно з правилом диференціювання дробу:

y " = x 3 + 4 x 2 " = x 3 + 4 " · x 2 - x 3 + 4 · x 2 " x 4 = = 3 x 2 · x 2 - (x 3 - 4) · 2 x x 4 = x 3 - 8 x 3

Ми дізналися, що похідна функції існуватиме у всіх точках відрізків [1; 4] і [-4; -1].

Тепер треба визначити стаціонарні точки функції. Зробимо це за допомогою рівняння x 3 – 8 x 3 = 0 . У нього є тільки один дійсний корінь, що дорівнює 2 . Він буде стаціонарною точкою функції і потрапить у перший відрізок [1; 4].

Обчислимо значення функції кінцях першого відрізка й у цій точці, тобто. для x = 1, x = 2 і x = 4:

y(1) = 1 3 + 4 1 2 = 5 y (2) = 2 3 + 4 2 2 = 3 y (4) = 4 3 + 4 4 2 = 4 1 4

Ми отримали, що найбільше значення функції m a x y x ∈ [1; 4 ] = y (2) = 3 буде досягнуто за x = 1 , а найменше m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 – за x = 2 .

Другий відрізок не включає жодної стаціонарної точки, тому нам треба обчислити значення функції тільки на кінцях заданого відрізка:

y(-1) = (-1) 3 + 4 (-1) 2 = 3

Значить, m a x y x ∈ [- 4; - 1] = y (- 1) = 3, m i n y x ∈ [- 4; - 1] = y(-4) = - 3 3 4 .

Відповідь:Для відрізка [1; 4] - m a x y x ∈ [1; 4 ] = y (2) = 3 , m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 для відрізка [ - 4 ; - 1 ] - m a x y x ∈ [ - 4; - 1] = y (- 1) = 3, m i n y x ∈ [- 4; - 1] = y(-4) = - 3 3 4 .

на малюнку:


Перед тим як вивчити цей спосіб, радимо вам повторити, як правильно обчислювати односторонню межу та межу на нескінченності, а також дізнатися про основні методи їх знаходження. Щоб знайти найбільше та/або найменше значення функції на відкритому або нескінченному інтервалі, виконуємо послідовно такі дії.

  1. Для початку потрібно перевірити, чи буде заданий інтервал бути підмножиною області визначення цієї функції.
  2. Визначимо всі точки, які містяться в потрібному інтервалі та в яких не існує першої похідної. Зазвичай вони бувають у функцій, де аргумент укладено у знаку модуля, і у статечних функцій з дрібно раціональним показником. Якщо ж ці точки відсутні, можна переходити до наступного кроку.
  3. Тепер визначимо, які стаціонарні точки потраплять до заданого проміжку. Спочатку прирівняємо похідну до 0, розв'яжемо рівняння і підберемо відповідне коріння. Якщо ми не маємо жодної стаціонарної точки або вони не потрапляють у заданий інтервал, то відразу переходимо до подальших дій. Їх визначає вигляд інтервалу.
  • Якщо інтервал має вигляд [a; b) , то треба обчислити значення функції у точці x = a і односторонню межу lim x → b - 0 f (x) .
  • Якщо інтервал має вигляд (a; b], то нам треба обчислити значення функції в точці x = b і одностороння межа lim x → a + 0 f (x).
  • Якщо інтервал має вигляд (a; b), то нам треба обчислити односторонні межі lim x → b - 0 f (x), lim x → a + 0 f (x).
  • Якщо інтервал має вигляд [a; + ∞) , то треба обчислити значення у точці x = a і межа на плюс нескінченності lim x → + ∞ f (x) .
  • Якщо інтервал виглядає як (- ∞ ; b ) , обчислюємо значення у точці x = b і межа на мінус нескінченності lim x → - ∞ f (x) .
  • Якщо - ∞; b , то вважаємо односторонню межу lim x → b - 0 f (x) і межу на мінус нескінченності lim x → - ∞ f (x)
  • Якщо ж - ∞; + ∞ , то вважаємо межі на мінус і плюс нескінченності lim x → + ∞ f (x), lim x → - ∞ f (x).
  1. Наприкінці потрібно зробити висновок на основі отриманих значень функції та меж. Тут можлива безліч варіантів. Так, якщо одностороння межа дорівнює мінус нескінченності або плюс нескінченності, то відразу зрозуміло, що про найменше і найбільше значення функції сказати нічого не можна. Нижче ми розберемо один типовий приклад. Детальні описи допоможуть вам зрозуміти, що до чого. При необхідності можна повернутись до малюнків 4 - 8 у першій частині матеріалу.
Приклад 2

Умова: дана функція y = 3 e 1 x 2 + x – 6 – 4 . Обчисліть її найбільше та найменше значення в інтервалах - ∞ ; - 4, - ∞; - 3, (-3; 1], (-3; 2), [1; 2), 2; + ∞, [4; + ∞).

Рішення

Насамперед знаходимо область визначення функції. У знаменнику дробу стоїть квадратний тричлен, який не повинен звертатися до 0:

x 2 + x - 6 = 0 D = 1 2 - 4 · 1 · (- 6) = 25 x 1 = - 1 - 5 2 = - 3 x 2 = - 1 + 5 2 = 2 ⇒ D (y) : x ∈ (- ∞ ; - 3) ∪ (- 3 ; 2) ∪ (2 ; + ∞)

Ми отримали область визначення функції, до якої належать всі зазначені в інтервалі.

Тепер виконаємо диференціювання функції та отримаємо:

y " = 3 e 1 x 2 + x - 6 - 4 " = 3 · e 1 x 2 + x - 6 " = 3 · e 1 x 2 + x - 6 · 1 x 2 + x - 6 " = = 3 · e 1 x 2 + x - 6 · 1” · x 2 + x - 6 - 1 · x 2 + x - 6” (x 2 + x - 6) 2 = - 3 · (2 ​​x + 1) · e 1 x 2 + x - 6 x 2 + x - 6 2

Отже, похідні функції існують по всій області її визначення.

Перейдемо до знаходження стаціонарних точок. Похідна функції звертається до 0 при x = - 1 2 . Це стаціонарна точка, яка знаходиться в інтервалах (-3; 1] і (-3; 2).

Обчислимо значення функції при x = - 4 для проміжку (- ∞ ; - 4 ], а також межа на мінус нескінченності:

y (- 4) = 3 e 1 (- 4) 2 + (- 4) - 6 - 4 = 3 e 1 6 - 4 ≈ - 0 . 456 lim x → - ∞ 3 e 1 x 2 + x - 6 = 3 e 0 - 4 = - 1

Оскільки 3 e 1 6 - 4 > - 1 , значить, m a x y x ∈ (- ∞ ; - 4 ) = y (- 4) = 3 e 1 6 - 4. Це не дає нам можливості однозначно визначити найменше значення функції. зробити висновок, що внизу є обмеження – 1, оскільки саме до цього значення функція наближається асимптотично на мінус нескінченності.

Особливістю другого інтервалу є те, що в ньому немає жодної стаціонарної точки та жодної суворої межі. Отже, ні найбільшого, ні найменшого значення функції ми не зможемо обчислити. Визначивши межу на мінус нескінченності та при прагненні аргументу до - 3 з лівого боку, ми отримаємо лише інтервал значень:

lim x → - 3 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 - 0 3 e 1 (x + 3) (x - 3) - 4 = 3 e 1 (- 3 - 0 + 3) (- 3 - 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → - ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Значить значення функції будуть розташовані в інтервалі - 1 ; + ∞

Щоб знайти найбільше значення функції у третьому проміжку, визначимо її значення стаціонарної точці x = - 1 2 , якщо x = 1 . Також нам треба буде знати односторонню межу для того випадку, коли аргумент прагне до - 3 з правого боку:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e 4 25 - 4 ≈ - 1 . 444 y (1) = 3 e 1 1 2 + 1 - 6 - 4 ≈ - 1 . 644 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 - 3 + 0 + 3 (-3 + 0 - 2) - 4 = = 3 e 1 (- 0) - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

У нас вийшло, що найбільше значення функція набуде в стаціонарній точці m a x y x ∈ (3 ; 1 ] = y - 1 2 = 3 e - 4 25 - 4. Що стосується найменшого значення, то ми не можемо визначити. Все, що нам відомо , – це обмеження знизу до - 4 .

Для інтервалу (- 3 ; 2) візьмемо результати попереднього обчислення і ще раз підрахуємо, чому дорівнює одностороння межа при прагненні до 2 з лівого боку:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e - 4 25 - 4 ≈ - 1 . 444 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = - 4 lim x → 2 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 - 0 + 3) (2 - 0 - 2) - 4 = = 3 e 1 - 0 - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

Отже, m a x y x ∈ (- 3 ; 2) = y - 1 2 = 3 e - 4 25 - 4 а найменше значення визначити неможливо, і значення функції обмежені знизу числом - 4 .

Виходячи з того, що у нас вийшло у двох попередніх обчисленнях, ми можемо стверджувати, що на інтервалі [1; 2) найбільше значення функція прийме при x = 1, а знайти найменше неможливо.

На проміжку (2 ; + ∞) функція досягне ні найбільшого, ні найменшого значення, тобто. вона прийматиме значення з проміжку - 1 ; + ∞.

lim x → 2 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 + 0 + 3 ) (2 + 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Обчисливши, чому дорівнює значення функції при x = 4 , з'ясуємо, що m a x y x ∈ [ 4 ; + ∞) = y (4) = 3 e 1 14 - 4 і задана функція на плюс нескінченності буде асимптотично наближатися до прямої y = - 1 .

Порівняємо те, що ми вийшло у кожному обчисленні, з графіком заданої функції. На малюнку асимптоти показані пунктиром.

Це все, що ми хотіли розповісти про знаходження найбільшого та найменшого значення функції. Ті послідовності дій, які ми привели, допоможуть зробити необхідні обчислення максимально швидко та просто. Але пам'ятайте, що часто буває корисно спочатку з'ясувати, на яких проміжках функція зменшуватиметься, а на яких зростатиме, після чого можна робити подальші висновки. Так можна більш точно визначити найбільше та найменше значення функції та обґрунтувати отримані результати.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter


Постановка задачі 2:

Дана функція, визначена і безперервна на певному проміжку. Потрібно знайти найбільше (найменше) значення функції у цьому проміжку.

Теоретичні основи.
Теорема (Друга теорема Вейєрштрасса):

Якщо функція визначена і безперервна в замкнутому проміжку , вона досягає у цьому проміжку своїх найбільшого і найменшого значень.

Функція може досягати своїх найбільших та найменших значень або на внутрішніх точках проміжку або на його межах. Проілюструємо всі можливі варіанти.

Пояснення:
1) Функція досягає свого найбільшого значення на лівій межі проміжку в точці, а свого найменшого значення на правій межі проміжку в точці.
2) Функція досягає свого найбільшого значення в точці (це точка максимуму), а свого найменшого значення на правій межі проміжку в точці.
3) Функція досягає свого найбільшого значення на лівій межі проміжку в точці, а свого найменшого значення в точці (це точка мінімуму).
4) Функція стала на проміжку, тобто. вона досягає свого мінімального та максимального значення у будь-якій точці проміжку, причому мінімальне та максимальне значення рівні між собою.
5) Функція досягає свого найбільшого значення у точці , а свого найменшого значення точці (попри те, що функція має у цьому проміжку як максимум, і мінімум).
6) Функція досягає свого найбільшого значення у точці (це точка максимуму), а свого найменшого значення у точці (це точка мінімуму).
Зауваження:

"Максимум" і "максимальне значення" - різні речі. Це випливає із визначення максимуму та інтуїтивного розуміння словосполучення «максимальне значення».

Алгоритм розв'язання задачі 2.



4) Вибрати із отриманих значень найбільше (найменше) та записати відповідь.

Приклад 4:

Визначити найбільше та найменше значення функції на відрізку.
Рішення:
1) Знайти похідну функції.

2) Знайти стаціонарні точки (і точки, підозрілі на екстремум), вирішивши рівняння. Звернути увагу на точки, в яких немає двосторонньої кінцевої похідної.

3) Обчислити значення функції у стаціонарних точках та на межах інтервалу.



4) Вибрати із отриманих значень найбільше (найменше) та записати відповідь.

Функція на цьому відрізку досягає свого найбільшого значення у точці з координатами.

Функція на цьому відрізку досягає найменшого значення в точці з координатами .

У правильність обчислень можна переконатися, подивившись графік досліджуваної функції.


Зауваження:Найбільшого значення функція сягає точці максимуму, а найменшого – межі відрізка.

Окремий випадок.

Припустимо, потрібно знайти максимально та мінімальне значення деякої функції на відрізку. Після виконання першого пункту алгоритму, тобто. обчислення похідної, стає ясно, що, наприклад, вона приймає лише негативні значення на всьому розглянутому відрізку. Пам'ятаємо, якщо похідна негативна, то функція зменшується. Отримали, що на всьому відрізку функція зменшується. Ця ситуація відображена на графіку №1 на початку статті.

На відрізку функція зменшується, тобто. точок екстремумів у неї немає. З зображення видно, що найменше значення функція прийме на правій межі відрізка, а найбільше значення - на лівій. якщо похідна на відрізку всюди позитивна, то функція зростає. Найменше значення - на лівій межі відрізка, найбільше - на правій.

У цій статті я розповім про алгоритм пошуку найбільшого та найменшого значенняфункції, точок мінімуму та максимуму.

З теорії нам знадобиться таблиця похіднихі правила диференціювання. Все це є у цій табличці:

Алгоритм пошуку найбільшого та найменшого значення.

Мені зручніше пояснювати на конкретному прикладі. Розглянемо:

Приклад:Знайдіть найбільше значення функції y=x^5+20x^3–65x на відрізку [–4;0].

Крок 1.Беремо похідну.

Y" = (x^5+20x^3–65x)" = 5x^4 + 20*3x^2 - 65 = 5x^4 + 60x^2 - 65

Крок 2Знаходимо точки екстремуму.

Крапкою екстремумуми називаємо такі точки, у яких функція досягає свого найбільшого чи найменшого значення.

Щоб знайти точки екстремуму, треба прирівняти похідну функцію до нуля (y" = 0)

5x^4 + 60x^2 - 65 = 0

Тепер вирішуємо це біквадратне рівняння та знайдене коріння є наші точки екстремуму.

Я розв'язую такі рівняння заміною t = x^2, тоді 5t^2 + 60t – 65 = 0.

Скоротимо рівняння на 5, отримаємо: t^2 + 12t - 13 = 0

D = 12 ^ 2 - 4 * 1 * (-13) = 196

T_(1) = (-12 + sqrt(196))/2 = (-12 + 14)/2 = 1

T_(2) = (-12 - sqrt(196))/2 = (-12 - 14)/2 = -13

Робимо зворотну заміну x^2 = t:

X_(1 та 2) = ±sqrt(1) = ±1
x_(3 і 4) = ±sqrt(-13) (виключаємо, під коренем не може бути негативних чисел, якщо звичайно не йдеться про комплексні числа)

Разом: x_(1) = 1 і x_(2) = -1 - і є наші точки екстремуму.

Крок 3Визначаємо найбільше та найменше значення.

Метод підстановки.

За умови нам було дано відрізок [b][–4;0]. Точка x=1 у цей відрізок не входить. Отже її ми не розглядаємо. Але крім точки x=-1 нам також треба розглянути ліву та праву межу нашого відрізка, тобто точки -4 та 0. Для цього підставляємо всі ці три точки у вихідну функцію. Зауважте вихідну - це ту, яка дана в умові (y=x^5+20x^3–65x), деякі починають підставляти у похідну...

Y(-1) = (-1)^5 + 20*(-1)^3 - 65*(-1) = -1 - 20 + 65 = [b]44
y(0) = (0)^5 + 20*(0)^3 - 65*(0) = 0
y(-4) = (-4)^5 + 20*(-4)^3 - 65*(-4) = -1024 - 1280 + 260 = -2044

Значить найбільше значення функції це [b]44 і досягається воно точки [b]-1, яка називається точкою максимуму функції на відрізку [-4; 0].

Ми вирішили та отримали відповідь, ми молодці, можна розслабитися. Але стоп! Вам не здається, що рахувати y(-4) якось надто складно? В умовах обмеженого часу краще скористатися іншим способом, я називаю його так:

Через проміжки знаковості.

Знаходяться ці проміжки для похідної функції, тобто нашого біквадратного рівняння.

Я роблю це так. Малюю спрямований відрізок. Розставляю точки: -4, -1, 0, 1. Не дивлячись на те, що 1 не входить у заданий відрізок, її все одно слід зазначити для того, щоб коректно визначити проміжки знакопостійності. Візьмемо яке-небудь число набагато більше 1, припустимо 100, подумки підставимо його в наше біквадратне рівняння 5 (100) ^ 4 + 60 (100) ^ 2 - 65. Навіть нічого крім стає очевидно, що в точці 100 функція має знак плюс. А значить, і на проміжки від 1 до 100 вона має знак плюс. При переході через 1 (ми йдемо праворуч наліво) функція змінить знак на мінус. При переході через точку 0 функція збереже свій знак, оскільки це лише межа відрізка, а чи не корінь рівняння. При переході через -1 функція знову змінить знак плюс.

З теорії ми знаємо, що там, де похідна функції (а ми саме для неї це креслили) змінює знак із плюсу на мінус (точка -1 у нашому випадку)функція досягає свого локального максимуму (y(-1)=44, як було пораховано раніше)на даному відрізку (це логічно дуже зрозуміло, функція перестала зростати, оскільки досягла свого максимуму і почала зменшуватися).

Відповідно, там де похідна функції змінює знак з мінусу на плюс, досягається локальний мінімум функції. Так, так, ми також знайшли точку локального мінімуму 1, а y(1) - це мінімальне значення функції на відрізку, допустимо від -1 до +∞. Зверніть велику увагу, що це лише локальний мінімум, тобто мінімум на певному відрізку. Так як дійсний (глобальний) мінімум функція досягне десь там, -∞.

На погляд перший спосіб простіше теоретично, а другий простіше з погляду арифметичних дій, але набагато складніше з погляду теорії. Адже іноді бувають випадки, коли функція не змінює знак при переході через корінь рівняння, та й взагалі можна заплутатися з цими локальними, глобальними максимумами та мінімумами, хоча Вам так і так доведеться це добре освоїти, якщо ви плануєте вступати до технічного ВНЗ (а для чого інакше здавати профільне ЄДІ та вирішувати це завдання). Але практика і лише практика раз і назавжди навчить Вас вирішувати такі завдання. А тренуватись можете на нашому сайті. Ось.

Якщо виникли якісь питання, або щось незрозуміло – обов'язково запитайте. Я з радістю Вам відповім і внесу зміни, доповнення до статті. Пам'ятайте, ми робимо цей сайт разом!


З практичної погляду найбільший інтерес представляє використання похідної знаходження найбільшого і найменшого значення функції. З чим це пов'язано? Максимізація прибутку, мінімізація витрат, визначення оптимального завантаження устаткування... Інакше кажучи, у багатьох сферах життя доводиться вирішувати завдання оптимізації будь-яких параметрів. А це є завдання на знаходження найбільшого і найменшого значення функції.

Слід зазначити, що найбільше і найменше значення функції зазвичай шукається на деякому інтервалі X , який є всією областю визначення функції або частиною області визначення. Сам інтервал X може бути відрізком, відкритим інтервалом , нескінченним проміжком.

У цій статті ми говоритимемо про знаходження найбільшого та найменшого значень явно заданої функції однієї змінної y=f(x) .

Навігація на сторінці.

Найбільше та найменше значення функції – визначення, ілюстрації.

Стисло зупинимося на основних визначеннях.

Найбільшим значенням функції , що для будь-кого справедлива нерівність.

Найменшим значенням функції y=f(x) на проміжку X називають таке значення , що для будь-кого справедлива нерівність.

Ці визначення інтуїтивно зрозумілі: найбільше (найменше) значення функції – це найбільше (маленьке) значення на аналізованому інтервалі при абсцисі.

Стаціонарні точки– це значення аргументу, у яких похідна функції перетворюється на нуль.

Для чого нам стаціонарні точки при знаходженні найбільшого та найменшого значень? Відповідь це питання дає теорема Ферма. З цієї теореми випливає, що якщо функція, що диференціюється, має екстремум (локальний мінімум або локальний максимум) в деякій точці, то ця точка є стаціонарною. Таким чином, функція часто приймає своє найбільше (найменше) значення на проміжку X в одній зі стаціонарних точок цього проміжку.

Також часто найбільше та найменше значення функція може приймати у точках, у яких не існує перша похідна цієї функції, а сама функція визначена.

Відразу відповімо на одне з найпоширеніших питань на цю тему: "Чи завжди можна визначити найбільше (найменше) значення функції"? Ні не завжди. Іноді межі проміжку X збігаються з межами області визначення функції або інтервал X нескінченний. А деякі функції на нескінченності та на межах області визначення можуть набувати як нескінченно великі, так і нескінченно малі значення. У цих випадках нічого не можна сказати про найбільше та найменше значення функції.

Для наочності дамо графічну ілюстрацію. Подивіться малюнки – і багато проясниться.

На відрізку


На першому малюнку функція приймає найбільше (max y) і найменше (min y) значення в стаціонарних точках, що знаходяться всередині відрізка [-6; 6].

Розглянемо випадок, зображений другого малюнку. Змінимо відрізок на . У цьому прикладі найменше значення функції досягається в стаціонарній точці, а найбільше - у точці з абсцисою, що відповідає правій межі інтервалу.

На малюнку №3 граничні точки відрізка [-3;2] є абсцисами точок, що відповідають найбільшому та найменшому значенню функції.

На відкритому інтервалі


На четвертому малюнку функція приймає найбільше (max y ) і найменше (min y ) значення стаціонарних точках, що усередині відкритого інтервалу (-6;6) .

На інтервалі про найбільше значення ніяких висновків зробити не можна.

На нескінченності


У прикладі, представленому на сьомому малюнку, функція приймає найбільше значення (max y) у стаціонарній точці з абсцисою x=1, а найменше значення (min y) досягається на правій межі інтервалу. На мінус нескінченності значення функції асимптотично наближаються до y=3.

На інтервалі функція не досягає найменшого, ні найбільшого значення. При прагненні до x=2 праворуч значення функції прагнуть мінус нескінченності (пряма x=2 є вертикальною асимптотою), а при прагненні абсциси до плюс нескінченності, значення функції асимптотично наближаються до y=3 . Графічна ілюстрація цього прикладу наведено малюнку №8.

Алгоритм знаходження найбільшого та найменшого значення безперервної функції на відрізку.

Запишемо алгоритм, що дозволяє знаходити найбільше та найменше значення функції на відрізку.

  1. Знаходимо область визначення функції та перевіряємо, чи міститься у ній весь відрізок .
  2. Знаходимо всі точки, в яких не існує перша похідна і які містяться у відрізку (зазвичай такі точки збігаються у функцій з аргументом під знаком модуля та у статечних функцій з дробно-раціональним показником). Якщо таких точок немає, переходимо до наступного пункту.
  3. Визначаємо всі стаціонарні точки, що у відрізок . Для цього, прирівнюємо її до нуля, вирішуємо отримане рівняння і вибираємо відповідне коріння. Якщо стаціонарних точок немає або жодна з них не потрапляє у відрізок, переходимо до наступного пункту.
  4. Обчислюємо значення функції у відібраних стаціонарних точках (якщо такі є), у точках, у яких не існує перша похідна (якщо такі є), а також при x=a та x=b .
  5. З отриманих значень функції вибираємо найбільше і найменше - вони будуть шуканими найбільшим і найменшим значеннями функції відповідно.

Розберемо алгоритм при вирішенні прикладу на знаходження найбільшого та найменшого значення функції на відрізку.

приклад.

Знайти найбільше та найменше значення функції

  • на відрізку;
  • на відрізку [-4;-1].

Рішення.

Областью визначення функції є безліч дійсних чисел, крім нуля, тобто . Обидва відрізки потрапляють у область визначення.

Знаходимо похідну функції по:

Очевидно, похідна функції існує у всіх точках відрізків та [-4;-1].

Стаціонарні точки визначимо з рівняння. Єдиним дійсним коренем є x=2. Ця стаціонарна точка потрапляє у перший відрізок.

Для першого випадку обчислюємо значення функції на кінцях відрізка та в стаціонарній точці, тобто при x=1, x=2 і x=4:

Отже, найбільше значення функції досягається при x=1 а найменше значення - При x = 2.

Для другого випадку обчислюємо значення функції лише на кінцях відрізка [-4;-1] (оскільки він не містить жодної стаціонарної точки):

Рішення.

Почнемо з області визначення функції. Квадратний тричлен у знаменнику дробу не повинен звертатися до нуля:

Легко перевірити, що всі інтервали з умови завдання належать області визначення функції.

Продиференціюємо функцію:

Очевидно, похідна існує по всій області визначення функції.

Знайдемо стаціонарні точки. Похідна звертається в нуль при . Ця стаціонарна точка потрапляє в інтервали (-3; 1) та (-3; 2).

А тепер можна зіставити отримані у кожному пункті результати із графіком функції. Синіми пунктирними лініями позначені асимптоти.

На цьому можна закінчити із знаходженням найбільшого та найменшого значення функції. Алгоритми, розібрані у цій статті, дозволяють отримати результати при мінімумі дій. Однак буває корисно спочатку визначити проміжки зростання та зменшення функції і тільки після цього робити висновки про найбільше і найменше значення функції на якомусь інтервалі. Це дає більш ясну картину та суворе обґрунтування результатів.

 


Читайте:



Сепаратистський Донбас: політичні угруповання "ДНР"

Сепаратистський Донбас: політичні угруповання

Клас 11 Тема 12. Макросфера 1. «Донбас – моя Батьківщина». Мікросфера «Я – мешканець Донбасу» Тема уроку. Тип уроку. Оглядове...

Програмні заяви: що пропонують виборцям кандидати у президенти Росії

Програмні заяви: що пропонують виборцям кандидати у президенти Росії

Ось ті основні заходи, які пропонують народно-патріотичні сили країни: Ми готові поставити багатства Росії, її природні, промислові та...

Шекспір ​​"Гамлет": опис, герої, аналіз твору

Шекспір

Гамлет - одна з найбільших шекспірівських трагедій. Вічні питання, порушені у тексті, хвилюють людство досі. Любовні колізії, теми,...

Сюжет та історія створення трагедії В

Сюжет та історія створення трагедії В

Сюжет та історія створення трагедії В. Шекспіра «Гамлет» «Гамлет» стоїть окремо навіть у геніальній спадщині Шекспіра. Головний герой п'єси - людина.